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Abstract. We investigate the role of electron correlations on the plasmon dispersion in alkali 
m e l s  using a sum rule approach. The single pair contribution to the low-energy pan of 
the excitation spectrum is calculated in lhe framework of the Landau theory of Fermi liquids 
and used to estimate the plasmon contribution to the compressibility sum rule. The plasmon 
contribution to lhe f -sum rule is calculated employing a non-local effective interaction (8-matrix) 
recently proposed in the literature. The analysis accounts for the slrong density dependence of 
the dispersion coefficient a exhibited by experimental data. The average energy of multipair 
excitations is also estimated. 

Recent experiments [I]  on the volume plasmon dispersion in alkali metals have shown 
strong deviations from the predictions of current theories for Fermi liquids [2,3] including 
short-range, exchange and correlation effects. A key quantity in this context is the dispersion 
coefficient a defined by 

where *(O) = ,/- and n = 3/4xr: is the density. The density dependence of 
a has been shown to exhibit a rather unexpected behaviour in the experiment of [ 1 j (see 
figure 1). In particular for r, 2 5, the quantity a becomes negative in contrast with all 
theoretical predictions. 

The aim of this work is to show that this behaviour is related to the occurrence of 
multipair effects that become more and more important as r, increases and in particular to 
the fact that the plasmon does not exhaust the f-sum rule (a similar behaviour was recently 
pointed out [4] in the spin response of liquid 'He). Vice versa multipair effects become 
negligible at small r, where the dynamics of the system is governed by the equations of 
the random phase approximation accounting only for 1 particle-1 hole ( I p l h )  transitions 
(single pair and collective plasmon excitations)[5]. 

The q-dependence of the contribution to the density excitation strength lpn# = 
l(n1$q[0)[2 arising from the various excitations in the electron system can be deduced [SI on 
the basis of simple arguments based on conservation laws and sum rules. These excitations 
include single-pair, collective plasmon and multiparticle-multihole (multipair) transitions. 
The leading contributions of these transitions, at low q ,  to the various moments 
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Figure 1. Volume plasmon dispersion coefficienls nor- 
malized to the RPA value (arm = &/wP(O)) against the 
WignerSeig~ndius rs~, The solid line is the resuit of (13). 
The dotted line gives the dispersion coefficient as calculated 
from (13) with K = 0. Experimental data are from [I ] .  

of the dynamic structure function 

S(9 .w)  = ~ I c n l ~ ~ l o ) 1 * 6 ( w , o - W )  
n 

are reported in table 1. In (2) 10) and In) are the ground and excited states of the system 
and 

is the electron density operator. 
In the following we will investigate the dispersion of the plasmon in alkali metals with 

the help of the inverse-energy-weighted sum rule m-t and of the energy-weighted sum rule 
ml. With the help of table 1, we can write (up to terms in q 4 ) :  

mi = ml PI + ml mp . (3) m-l = m - ]  PI + mS_9 + m y :  

Since multipair excitations (mp) are expected to be located at high energies with respect to 
the plasmon and single-pair excitations, for a first analysis we will neglect their contribution 
to the inverse-energy-weighted sum rule 

m-1 = S(q, w)w-' dw s 
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Table 1. 
excitations in the long wavelength limil. 

2027 

Mavix elements, excialion frequencies, and sum mle conlribuiions of density 

Single-pair Plasmon Multipairs 

where the high-energy part of the excitation spectrum is quenched by the l / w  factor. Kce 
versa multipair effects will be explicitly considered in the energy-weighted sum rule 

The inverse-energy-weighted moment m-i is given [5], up to terms in q4 ,  by 

where l / m s 2  is the compressibility of the system. 

m - ]  can be exactly evaluated. The result is 
An important point of the present analysis is that the single-pair (sp) contribution to 

where t~ is the Fermi energy. Result (5) follows from the proper application of Landau's 
theory to the calculation of the low q. w component of the screened response function. In 
fact one can show that in this regime, the imaginary part of the dynamic response function 
obeys the relation 

where xsc is the usual screened response function. Since in the low q,w limit, one can safely 
use the equation l / x s c ( q , w )  = l / xo (q ,  w )  + FO holding in Landau's theory (we have set 
here Fe = 0 for e 2 Z), one finally gets the useful result 

where xo(4.w) is the free electron gas response function fixed by the Fermi energy 
E F  = q i /2m".  It is worth noting that the Landau parameter FO does not enter in the 
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low q,  o behaviour of ImX(q.o). From (7) and recalling that S ( q , o )  = -iImX, one 
derives the single particle Contribution (5) to m-1. 

Let us now discuss the energy-weighted moment m 1 .  This moment is model independent 
and given by the famous f-sum d e :  

Looking at (3), one concludes that the q4 correction due to the plasmon and multipair 
excitation must cancel exactly. The calculation of the plasmon contribution to the m l  
sum rule requires a non-trivial many-body approach, We propose a first estimate of this 
contribution in the framework of the Brueckner-Hartree-Fock theory. This theory has 
been so far developed in the local approximation [6]. This is not enough to obtain the 
contribution to the f-sum rule which originates from explicit non-local and finite-range 
terms in the effective interaction. In the Brueckner-Hartree-Fock approach, the plasmon 
contribution to m l  can be calculated, at low q,  through 

(9) 

where the non-local effective Hamiltonian to be used in (9) has been recently derived in [7] 
and has the form 

mP' - L 
I - , ( H F I [ b - q ,  I H e f f , j q s ] l l H F )  

In (10) v ( q )  = 4n/q2 is the Coulomb interaction and C ( i ( p t  - p2 + q ) ) V ( q )  is the non- 
local g-matrix correction obtained by solving the Bethe-Goldstone equations 171. From (9) 
and (10) one gets 

with 

1 K =-"[Z4/[j1(%)/$] 1612 C(r)r4dr-  [ j l ( k ~ r ) / k ~ r ] ~ V ( r ) r ~ d r  . ( l lb)  
2 

In the above equation C ( r )  and V ( r )  are the Fourier transform of C(P) and V(q) of (10). 
and 

Zp = 4rr rPV(r) dr C, = 4n rPC(r) dr. s s 
The values of the coefficient K of the q4 correction in (11) are reported in table 2 for 
different r,. 

Equations (5) and (1 1) are the main results of the present work. In particular result (1 1) 
permits us to go beyond the usual mean field theories, such as the time dependent local 
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Table 2. Values of the coefficient K and of the mean multipair excitation energy o m P  calculated 
usingequations (11)  and (16). The values of ry(0) and q are also shown. For fms2 and E& 
and E,,, we have used the Monte Carlo values of [IO]. The various quantities are in atomic 
units. 

rs EF m,(O) K om, 

2 0.460 0.613 0.05 1.52 
3 0.205 0.333 0.3 0.68 
4 0.115 0.217 0.5 0.48 
5 0.074 0.155 1.0 0.30 
6 0.051 0.118 2.0 0.20 

density approximation (TDLDA), where K = 0 and explicitly shows that the f -sum rule is 
not exhausted by the plasmon mode to the order q4. 

We are now ready to calculate the energy of the plasmon excitation through the equation 

where we have used ( 3 x 5 )  and (11). From (12) we get the expression 

for the dispersion coefficient normalized to the RPA value aRPA = + G ~ / W , ( O ) .  

In figure 1 we report the predictions of (13). For the effective mass entering the Fermi 
energy, we have taken the free electron mass. We have checked that the predictions for 
C Y / C Y ~ A  do not significantly depend on the value of the effective mass. Equation (13) 
accounts rather well for the general trend indicated by experiments. A crucial role is played 
by the term in K originating from the q“ plasmon contribution to the f-sum rule. In the 
absence of such a term (K = 0) one would find rather poor predictions (dotted line), very 
close to the results of TDLDA calculations [2,3]. 

Our results also permit us to estimate the average energy of multipair excitations through 
the ratio ,/=, where mTp is the multipair contribution to the cubic energy-weighted 
sum rule 

/” S(q, w)w3do. 

This quantity can be calculated using the result (see table 1) 

holding at the order q4,  where 

m3 = /” w’S(q. w )  dw 

is the cubic energy-weighted sum rule given by [8,9] 



2030 E Lipparini et ai 

and the second term in the RHS of (14) is the plasmon contribution. In (15) and 

are the kinetic and potential energy per particle respectively. Using equations (11)-(15), 
we finally obtain the following expression for the average energy of multipair excitations 

wmp = dm= , / ( 2 / m K ) [ ( E h  + &Ep.,) - ($" + $ 6 ~  - Kmw;(O))]. (16) 

The predicted values for d" are reported in table 2. As expected wmp is systematically 
larger than up' and E F .  

In conclusion we have calculated the plasmon contribution to the inverse-energy- 
weighted and energy-weighted sum rules. We have shown that the contribution of short- 
range Bruecher correlations to the f-sum rule is sizable and permits us to explain in 
a natural way the strong density dependence exhibited by the experimental data for the 
dispersion coefficient 01. 
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